翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

sparsely totient number : ウィキペディア英語版
sparsely totient number
In mathematics, a sparsely totient number is a certain kind of natural number. A natural number, ''n'', is sparsely totient if for all ''m'' > ''n'',
:\varphi(m)>\varphi(n)
where \varphi is Euler's totient function. The first few sparsely totient numbers are:
2, 6, 12, 18, 30, 42, 60, 66, 90, 120, 126, 150, 210, 240, 270, 330, 420, 462, 510, 630, 660, 690, 840, 870, 1050, 1260, 1320, 1470, 1680, 1890, ... .
For example, 18 is a sparsely totient number because ϕ(18) = 6, and any number ''m'' > 18 falls into at least one of the following classes:
#''m'' has a prime factor ''p'' ≥ 11, so ϕ(''m'') ≥ ϕ(11) = 10 > ϕ(18).
#''m'' is a multiple of 7 and ''m''/7 ≥ 3, so ϕ(''m'') ≥ 2ϕ(7) = 12 > ϕ(18).
#''m'' is a multiple of 5 and ''m''/5 ≥ 4, so ϕ(''m'') ≥ 2ϕ(5) = 8 > ϕ(18).
#''m'' is a multiple of 3 and ''m''/3 ≥ 7, so ϕ(''m'') ≥ 4ϕ(3) = 8 > ϕ(18).
#''m'' is a power of 2 and ''m'' ≥ 32, so ϕ(''m'') ≥ ϕ(32) = 16 > ϕ(18).
The concept was introduced by David Masser and Peter Shiu in 1986. As they showed, every primorial is sparsely totient.
==Properties==

* If ''P''(''n'') is the largest prime factor of ''n'', then \liminf P(n)/\log n=1.
* P(n)\ll \log^\delta n holds for an exponent \delta=37/20.
* It is conjectured that \limsup P(n) / \log n = 2.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「sparsely totient number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.